Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation.

Identifieur interne : 002061 ( Main/Exploration ); précédent : 002060; suivant : 002062

Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation.

Auteurs : L S Broeckx [Belgique] ; R. Fichot [France] ; M S Verlinden [Belgique] ; R. Ceulemans [Belgique]

Source :

RBID : pubmed:25074859

Descripteurs français

English descriptors

Abstract

Photosynthetic carbon assimilation and transpirational water loss play an important role in the yield and the carbon sequestration potential of bioenergy-devoted cultures of fast-growing trees. For six poplar (Populus) genotypes in a short-rotation plantation, we observed significant seasonal and genotypic variation in photosynthetic parameters, intrinsic water-use efficiency (WUEi) and leaf stable isotope composition (δ13C and δ18O). The poplars maintained high photosynthetic rates (between 17.8 and 26.9 μmol m(-2) s(-1) depending on genotypes) until late in the season, in line with their fast-growth habit. Seasonal fluctuations were mainly explained by variations in soil water availability and by stomatal limitation upon photosynthesis. Stomatal rather than biochemical limitation was confirmed by the constant intrinsic photosynthetic capacity (Vcmax) during the growing season, closely related to leaf nitrogen (N) content. Intrinsic water-use efficiency scaled negatively with carbon isotope discrimination (Δ13Cbl) and positively with the ratio between mesophyll diffusion conductance (gm) and stomatal conductance. The WUEi-Δ13Cbl relationship was partly influenced by gm. There was a trade-off between WUEi and photosynthetic N-use efficiency, but only when soil water availability was limiting. Our results suggest that seasonal fluctuations in relation to soil water availability should be accounted for in future modelling studies assessing the carbon sequestration potential and the water-use efficiency of woody energy crops.

DOI: 10.1093/treephys/tpu057
PubMed: 25074859
PubMed Central: PMC4131770


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation.</title>
<author>
<name sortKey="Broeckx, L S" sort="Broeckx, L S" uniqKey="Broeckx L" first="L S" last="Broeckx">L S Broeckx</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fichot, R" sort="Fichot, R" uniqKey="Fichot R" first="R" last="Fichot">R. Fichot</name>
<affiliation wicri:level="3">
<nlm:affiliation>University of Orléans, INRA, LBLGC, F-45067 Orléans, France regis.fichot@univ-orleans.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>University of Orléans, INRA, LBLGC, F-45067 Orléans</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verlinden, M S" sort="Verlinden, M S" uniqKey="Verlinden M" first="M S" last="Verlinden">M S Verlinden</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, R" sort="Ceulemans, R" uniqKey="Ceulemans R" first="R" last="Ceulemans">R. Ceulemans</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25074859</idno>
<idno type="pmid">25074859</idno>
<idno type="doi">10.1093/treephys/tpu057</idno>
<idno type="pmc">PMC4131770</idno>
<idno type="wicri:Area/Main/Corpus">002070</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002070</idno>
<idno type="wicri:Area/Main/Curation">002070</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002070</idno>
<idno type="wicri:Area/Main/Exploration">002070</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation.</title>
<author>
<name sortKey="Broeckx, L S" sort="Broeckx, L S" uniqKey="Broeckx L" first="L S" last="Broeckx">L S Broeckx</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fichot, R" sort="Fichot, R" uniqKey="Fichot R" first="R" last="Fichot">R. Fichot</name>
<affiliation wicri:level="3">
<nlm:affiliation>University of Orléans, INRA, LBLGC, F-45067 Orléans, France regis.fichot@univ-orleans.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>University of Orléans, INRA, LBLGC, F-45067 Orléans</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Orléans</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verlinden, M S" sort="Verlinden, M S" uniqKey="Verlinden M" first="M S" last="Verlinden">M S Verlinden</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, R" sort="Ceulemans, R" uniqKey="Ceulemans R" first="R" last="Ceulemans">R. Ceulemans</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Belgium (MeSH)</term>
<term>Carbon Isotopes (metabolism)</term>
<term>Forestry (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Oxygen Isotopes (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Seasons (MeSH)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Belgique (MeSH)</term>
<term>Eau (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Génotype (MeSH)</term>
<term>Isotopes de l'oxygène (métabolisme)</term>
<term>Isotopes du carbone (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Saisons (MeSH)</term>
<term>Science forêt (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Isotopes</term>
<term>Oxygen Isotopes</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Belgium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Isotopes de l'oxygène</term>
<term>Isotopes du carbone</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Forestry</term>
<term>Genotype</term>
<term>Photosynthesis</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Belgique</term>
<term>Génotype</term>
<term>Photosynthèse</term>
<term>Saisons</term>
<term>Science forêt</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Belgique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photosynthetic carbon assimilation and transpirational water loss play an important role in the yield and the carbon sequestration potential of bioenergy-devoted cultures of fast-growing trees. For six poplar (Populus) genotypes in a short-rotation plantation, we observed significant seasonal and genotypic variation in photosynthetic parameters, intrinsic water-use efficiency (WUEi) and leaf stable isotope composition (δ13C and δ18O). The poplars maintained high photosynthetic rates (between 17.8 and 26.9 μmol m(-2) s(-1) depending on genotypes) until late in the season, in line with their fast-growth habit. Seasonal fluctuations were mainly explained by variations in soil water availability and by stomatal limitation upon photosynthesis. Stomatal rather than biochemical limitation was confirmed by the constant intrinsic photosynthetic capacity (Vcmax) during the growing season, closely related to leaf nitrogen (N) content. Intrinsic water-use efficiency scaled negatively with carbon isotope discrimination (Δ13Cbl) and positively with the ratio between mesophyll diffusion conductance (gm) and stomatal conductance. The WUEi-Δ13Cbl relationship was partly influenced by gm. There was a trade-off between WUEi and photosynthetic N-use efficiency, but only when soil water availability was limiting. Our results suggest that seasonal fluctuations in relation to soil water availability should be accounted for in future modelling studies assessing the carbon sequestration potential and the water-use efficiency of woody energy crops.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25074859</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation.</ArticleTitle>
<Pagination>
<MedlinePgn>701-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpu057</ELocationID>
<Abstract>
<AbstractText>Photosynthetic carbon assimilation and transpirational water loss play an important role in the yield and the carbon sequestration potential of bioenergy-devoted cultures of fast-growing trees. For six poplar (Populus) genotypes in a short-rotation plantation, we observed significant seasonal and genotypic variation in photosynthetic parameters, intrinsic water-use efficiency (WUEi) and leaf stable isotope composition (δ13C and δ18O). The poplars maintained high photosynthetic rates (between 17.8 and 26.9 μmol m(-2) s(-1) depending on genotypes) until late in the season, in line with their fast-growth habit. Seasonal fluctuations were mainly explained by variations in soil water availability and by stomatal limitation upon photosynthesis. Stomatal rather than biochemical limitation was confirmed by the constant intrinsic photosynthetic capacity (Vcmax) during the growing season, closely related to leaf nitrogen (N) content. Intrinsic water-use efficiency scaled negatively with carbon isotope discrimination (Δ13Cbl) and positively with the ratio between mesophyll diffusion conductance (gm) and stomatal conductance. The WUEi-Δ13Cbl relationship was partly influenced by gm. There was a trade-off between WUEi and photosynthetic N-use efficiency, but only when soil water availability was limiting. Our results suggest that seasonal fluctuations in relation to soil water availability should be accounted for in future modelling studies assessing the carbon sequestration potential and the water-use efficiency of woody energy crops.</AbstractText>
<CopyrightInformation>© The Author 2014. Published by Oxford University Press.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Broeckx</LastName>
<ForeName>L S</ForeName>
<Initials>LS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fichot</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>University of Orléans, INRA, LBLGC, F-45067 Orléans, France regis.fichot@univ-orleans.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Verlinden</LastName>
<ForeName>M S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ceulemans</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010103">Oxygen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001530" MajorTopicYN="N" Type="Geographic">Belgium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016468" MajorTopicYN="N">Forestry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010103" MajorTopicYN="N">Oxygen Isotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="Y">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">leaf nitrogen</Keyword>
<Keyword MajorTopicYN="N">maximum rate of carboxylation</Keyword>
<Keyword MajorTopicYN="N">mesophyll conductance</Keyword>
<Keyword MajorTopicYN="N">photosynthetic nitrogen-use efficiency</Keyword>
<Keyword MajorTopicYN="N">short-rotation-coppice</Keyword>
<Keyword MajorTopicYN="N">soil water deficit</Keyword>
<Keyword MajorTopicYN="N">stomatal conductance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25074859</ArticleId>
<ArticleId IdType="pii">tpu057</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpu057</ArticleId>
<ArticleId IdType="pmc">PMC4131770</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Sep 22;289(5487):2068-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11000103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Apr;22(6):413-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Jun;89 Spec No:907-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Dec;53(379):2423-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 May;20(9):565-578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Jun;20(12):787-797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Jul;19(8):493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Nov;23(16):1113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Sep;23(13):865-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1989 Jun;5(2):173-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Jun;24(6):671-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15059767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 May;6(3):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15143435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Sep;24(9):971-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15234894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Mar;25(3):349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Jan;92(1):130-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Apr;98(4):1429-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Sep;26(9):1173-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Colloids Surf B Biointerfaces. 2006 Nov 1;53(1):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Feb;29(2):192-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(2):294-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(1):81-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Aug;30(8):922-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17617820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 May;31(5):602-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Mar;155(3):441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18224341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Sep;102(3):399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18587131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Nov;28(11):1751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(8):2217-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19357431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(8):2407-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1821-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Nov;29(11):1329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19773340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 May;33(5):863-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Sep;33(9):1553-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Nov;33(11):1898-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Feb;34(2):245-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20955222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):2093-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21193576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 May;62(8):2875-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21339387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Jun;34(6):962-979</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21388414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Feb;31(2):178-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21411434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Mar;31(3):240-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Sep;31(9):976-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Sep;31(9):922-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21571724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Nov;62(15):5335-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Nov;31(11):1183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22011967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2012 Jul;14(4):612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22188382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Apr;32(4):490-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Dec;35(12):2087-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):87-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22687135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Sep;193-194:70-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22794920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Oct;32(10):1214-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23022688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Nov;36(11):1961-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2014 Feb;119(1-2):77-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23609621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2013 Nov;117(1-3):45-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23670217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1980 Jun;149(1):78-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1983 Dec;60(3):384-389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Nov;125(3):350-357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
<li>France</li>
</country>
<region>
<li>Centre-Val de Loire</li>
<li>Province d'Anvers</li>
<li>Région Centre</li>
<li>Région flamande</li>
</region>
<settlement>
<li>Anvers</li>
<li>Orléans</li>
</settlement>
<orgName>
<li>Université d'Anvers</li>
</orgName>
</list>
<tree>
<country name="Belgique">
<region name="Région flamande">
<name sortKey="Broeckx, L S" sort="Broeckx, L S" uniqKey="Broeckx L" first="L S" last="Broeckx">L S Broeckx</name>
</region>
<name sortKey="Ceulemans, R" sort="Ceulemans, R" uniqKey="Ceulemans R" first="R" last="Ceulemans">R. Ceulemans</name>
<name sortKey="Verlinden, M S" sort="Verlinden, M S" uniqKey="Verlinden M" first="M S" last="Verlinden">M S Verlinden</name>
</country>
<country name="France">
<region name="Centre-Val de Loire">
<name sortKey="Fichot, R" sort="Fichot, R" uniqKey="Fichot R" first="R" last="Fichot">R. Fichot</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002061 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002061 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25074859
   |texte=   Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25074859" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020